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ABSTRACT

In this paper, we describe the how a multiagent Simple Temporal
Problem can be partitioned into private and shared components
with important implications for privacy and concurrency.
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1. INTRODUCTION

A person often develops a tentative schedule, possibly implicitly,
that organizes her daily goals in such a way that is likely to lead to
their successful achievement. This task becomes more challeng-
ing as her goals rely more heavily on coordination with other
individuals (joint meetings, projects, etc), since this requires
reacting to their tentative schedules, which may fluctuate in ways
beyond her control or knowledge. We discuss a way to partition
scheduling problems into shared and private components, as well
as approaches to exploit this partitioning, to allow scheduling
agents to coordinate schedules on behalf of human users, without
unnecessarily sacrificing the privacy users have over their person-
al schedules.

A Simple Temporal Problem (STP) is composed of a set of time-
point variables, ¥, and a set of temporal difference constraints, C,
of the form v; — v; € [-B};,B;], where v;, v; € V, and B; (= v; - v)
and Bj; (= v; — v)) are real numbers representing the minimum and
maximum differences between v; and v;, respectively. The STP is
a popular formulation for many scheduling and planning applica-
tions because an STP instance can be efficiently (in time poly-
nomial in V) compiled to be decomposable [3]. A decomposable
STP establishes the tightest bounds on all constraints such that (1)
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no valid schedule is eliminated from consideration, and (2) any
assignment of a time to a timepoint variable that respects these
bounds is guaranteed to be part of a feasible schedule. While the
advantages of decomposable STP instances (representing the en-
tire set of possible schedules) have long been realized in many
centralized, or single agent settings [2], with few exceptions (e.g.,
[4,6]) little research has taken advantage of decomposability in
the Multiagent STP (MaSTP).

Figure 1 shows an example of a MaSTP, displayed as a distance
graph. Each timepoint variable is represented as a vertex. This
STP includes start and end times (ST,ET) for a study session (SS),
a take-home exam (EXAM), a group meeting (GM1), and a re-
search paper (RP) for agent 1, and a programming assignment
(PA), homework assignment (HW), group meeting (GM2), and a
run (RUN) for agent 2. Each temporal difference constraint (v; —
v; € [-B;;,B;]) is represented by an edge from v; to v; with label [-
Bj;,B;j]. For example, that the duration of the study session should
last between 30 minutes and four hours is represented by a line
from SS.ST to SS.ET with label [30,240]. In this example, solid
edges represent minimum/maximum duration constraints, dashed
edges represent precedence constraints, dotted edges represent an
overall makespan constraint, and bold edges represent inter-agent
synchronization constraints.

4gent 1

Figure 1. An example multiagent STP.

Traditionally, decomposability is established by applying an all-
pairs-shortest-path algorithm to establish full path consistency [3].
However, more recent advances have shown that partial path
consistency (PPC) sufficiently establishes decomposability over
the subset of constraints that results from a triangulation of the
distance graph [7]. As a result, PPC algorithms, such as ASTP [7]
and P3C [5], exploit sparse constraint structure to find a decom-
posable STP instance more efficiently than fully path consistent
algorithms, in expectation. Our work exploits the loosely-coupled
structure that many MaSTPs (such as in Figure 1) have by intro-



ducing a partitioning of MaSTPs that allows individual agents to
maintain privacy over, and concurrently apply PPC algorithms to,
many of their timepoint variables.

2. PARTITIONING THE MaSTP

In a multiagent setting with » agents, we can partition the set of
timepoint variables, V, into n+1 sets: V', for each agent i, is the
set of i’s private timepoint variables, which are involved in no
inter-agent constraints, and Vg, the set of shared timepoint va-
riables, which are involved in one or more inter-agent constraints.
In Figure 1, V5 = {GMI1.ST, GM2.ST, SAMI, 8AM2} and V'
and 7’ are the remaining timepoint variables in each agent’s
respective shaded box. Similarly, we can partition the set of con-
straints, C, into C, the set of constraints involving at least one
variable in the set V5, and Cg, the set of constraints in which both
timepoint variables involved are in the set V.

PPC algorithms operate by establishing consistency on triangles
of triangulated graphs (graphs where the largest non-bisected
cycle is of size three). Conceptually, a graph is triangulated by
the process of considering vertices and their adjacent edges, one-
by-one, adding edges between parents of the vertex if no edge
previously existed, and then eliminating that vertex from further
consideration, until all vertices are eliminated. The order in
which these vertices are eliminated is known as an elimination
order and is typically heuristically chosen to try to minimize the
number of resulting triangles. If we restrict the elimination order
of the MaSTP so that private timepoint variables are eliminated
before shared timepoint variables, each agent can triangulate its
private timepoint variables (and subsequently can establish the
consistency of the resulting “private” triangles) completely pri-
vately, asynchronously, and independently of other agents. This
leaves the relatively small shared portion of the MaSTP that re-
quires coordination to triangulate and establish consistency. It is
worth noting that the private-before-shared restriction may inter-
fere with the efficacy of a timepoint variable elimination ordering
heuristic, though our preliminary studies indicate that the advan-
tages of this restriction outweigh its costs.

Figure 2 shows this process in action (without the weights). Here
(left), agent 1 triangulates by eliminating its private timepoint
variables in the order indicated by the alphabetically labeled di-
amond tags. Meanwhile, agent 2 can asynchronously establish the
same (or a different) elimination order over its private timepoint
variables. Agents then coordinate to triangulate the shared time-
point variables (Figure 2 right). Notice that, given this combined
triangulation, each agent is independently responsible for estab-
lishing consistency over seven triangles, while they only need to
coordinate to establish consistency for two triangles. This reduces
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Figure 2. Agent 1's triangulation of its private timepoint va-
riables (left) and the triangulation of the shared STP (right).
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the non-concurrent triangle processing cost from 16 (in a centra-
lized approach) to nine (in a distributed approach).

3. DISCUSSION

As shown in our running example, our MaSTP partitioning de-
creases the amount of nonconcurrent computation that agents
must perform. Additionally, since agents only need to coordinate
over the relatively smaller set of shared timepoint variables, the
non-local view of the problem of any given agent is necessarily
limited to the shared timepoint variables and the edges between
them (Shared STP in Figure 2, right). Our partitioning does not,
however, guarantee the privacy of a constraint, ¢, between two
shared timepoints variables (¢ € Cs), even if both timepoint va-
riables belong to the same agent. As an example, in Figure 2,
Agent 2 will know the earliest and latest time Agent 1 can start the
group meeting (represented by Agent 1's local edge between
GM1.ST and 8AM1) because it is part of the shared STP. How-
ever, Agent 2 will not know which, how many, or the durations of
private commitments of Agent 1 (to study, take an exam, etc.) that
influence these earliest and latest start times.

By limiting all necessary coordination to a relatively small, shared
portion of a MaSTP, a scheduling agent can retain privacy and
independence over its private timepoint variables. We have for-
malized these approaches into a suite of algorithms with varying
degrees of decentralized computation and empirically tested the
performance of our algorithms, quantifying the trade-off between
the costs of the private-before-shared restriction on elimination
ordering with the concurrent computation gains [1]. In the future,
we plan to extend these approaches to adjust for dynamics during
schedule execution, such as the addition or removal of (inter and
intra-agent) constraints, events (timepoint variables), and agents.
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